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LElTER TO THE EDITOR 

Application of a reciprocal transformation to a two-phase 
Stefan problem 

C Rogerst 
School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA 

Received 30 October 1984 

Abstract. A reciprocal transformation is employed to reduce a two-phase Stefan problem 
in nonlinear heat conduction to a form which admits a class of exact solutions analogous 
to the classical Neumann solution. 

Storm (1951), in an investigation of heat transport in simple metals showed that for 
an important class of such materials a Backlund transformation may be introduced 
which reduces the governing nonlinear heat conduction equation to the classical 1 + 1 
heat equation. The method was used to solve a fixed boundary value problem involving 
a half-space with an insulated boundary. It has been shown recently that the Storm 
transformation may be set in the context of a class of reciprocal Backlund transforma- 
tions which allow the reduction of a wide variety of nonlinear boundary value problems 
to linear canonical form (Rogers 1983). Here, a two-phase Stefan problem is considered 
for materials of Storm-type. Such moving boundary problems arise naturally in the 
analysis of melting and solidification processes (Rubinstein 197 1). Their complexity 
resides in the fact that the heat balance condition at the moving interface separating 
the phases produces a nonlinear boundary condition. In the present problem there is 
the additional complication that the heat conduction equations that prevail on either 
side of the moving boundary are themselves nonlinear. It is shown that introduction 
of a reciprocal transformation allows the construction of a class of exact solutions 
analogous to the classical Neumann solution of linear heat conduction. 

The two-phase Stefan problem considered is for a semi-infinite region x > 0 with 
phase change temperature Tp It is required to determine the evolution of the moving 
phase separation boundary x = X (  t )  and temperature distribution 

where 

t Permanent address: Department of Applied Mathematics, University of Waterloo, Canada. 
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PCpZ( T2) a T2/at = (a/ax)[K2( Tz) aT,/axlm (4) 

K 2 (  Tz)  a Tz/ax = U (  t )  o n x = O , t > O  ( 6 )  

X ( 0 )  = 0 ( 6 )  

TI(x,O)= Vo< T,, x > O .  (7) 

0 < x < X( t )  

together with the initial conditions 

In the above, the T,(x, t ) ,  cpi( T,), K ~ (  T,) ,  i = 1,2 represent in turn the temperature 
distribution, specific heat and thermal conductivity in the two phases. The density p 
of the medium is assumed to be constant. L denotes the latent heat of fusion of the 
medium. In this problem a melting process is envisaged in which phase 1 is solid and 
phase 2 is liquid. Here U (  t )  denotes the prescribed flux on the boundary x = 0 while 
V, represents the initial temperature of the medium. It is noted that the analogous 
two-phase problem in linear heat conduction has been recently investigated by Tarzia 
(1982). As in that work attention is restricted to the class of moving boundary problems 
with 

U( t )  = U 0 P ,  X( t )  = (2yt)? (899) 

If we now set 
T, 

TO 
= ai( T,) = 5 Si( a) da,  Si = pep,( T,) i = 1,2 

then (2) and (4) become 

Our investigation is henceforth confined to materials for which 

ki@.I/@: = K i (  T,), i = 1, 2 
that is, 

where the ki, i = 1,2 are positive constants. Conditions of the type (13) were originally 
obtained by Storm (195 1)  in an investigation of heat conduction in simple monatomic 
metals. There, the validity of the approximation was examined for aluminium, silver, 
sodium, cadium, zinc, copper and lead. It was shown that KS and [ l n ( S / ~ ) ’ / ~ ] ’  exhibit 
only small variation over wide temperature ranges within which, accordingly, the 
approximation (13) is justified. Similar conclusions were reached for iron and 80% 
carbon steel. A recent account of the experimental evidence on the variation of thermal 
conductivity and specific heat with temperature is given in Tslaf (1981). 

Use of the conditions (12) in ( 1  1) reduces the heat conduction equations in the 
two phases to the form 

i =  1,2. 
c,- ki- a ( 7- 1 ai , )  = o  
a t  ax ~f ax 

The similarity variable 
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is now introduced and solutions of (14) are sought of the type 

= +iX(2yt)-1/2 i = 1 , 2  

whence (14) yields 

Under the reciprocal transformation 

(17) becomes 

whence, on integration 

We set Ci = 0 without subsequent loss of generality to obtain 

ki d4?/dS?= ~ ( 6 - 4 ? 6 ? )  
whence, on use of R we obtain the linear canonical form 

ki d24?/d[F2+ yr? dt$?/d[? = 0 i =  1,2 

with solution 
I / ,  

4~ = Ai erf[ (2) 2ki 5:] + Bi i = l , 2 .  

The four conditions 

Ti = T2 = Tf 

K2(  T2) aT2/ax = Uot-i/2 

on x = X ( t )  

onx=O,  t > O  

Tl(X, 0) = vo 
produce, in turn, four equations which determine the Ai, Ei i = 1,2 namely 

Now, on use of (20) together with (25) it is seen that 

5TIp=o = U0(2/ Y ) 1 / 2  
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whence, in general, (18) shows that 

rT= Jot 42(a) d a +  uo(2/Y)1/2. 

Moreover, the interface condition 

K I  ( TI) 8 r ~ / c ? ’ X  - K2(  T2) aT2/aX = L p k  on x = X( t )  
yields 

so that, from (20)  

Accordingly, 

Qz( T,) - @, ( T,) + .$TIS= I - silt= I = LP. 

Now, d2 is given parametrically in terms of 6 via 

5 =  lei { A2 erf[ (x)1’2a] + B2}  d a  

42 = { A2 erf[ ($-) 1’25T] + ..}-I 

U ( 2 1  Y ) ” *  2 k2 
On the other hand, is given parametrically in terms of 6 via 

The boundary condition (25) and the initial condition (26) yield, in turn, 

and 
A2( k 2 / v ) I / ’  exp(- U;/ k2)  = - U0[A2 erf( Uok;’/2)  + B,] (33) 

(34) AI  + BI = l /Ql (  Vo). 

To summarise the required temperature distributions TI and T2 are given parametri- 
cally by 

and I T2 = @;I{ A2 erf[ (2) 1’26:] + B 2 } - ‘ ,  

5 = { A2 erf[ (x)1’2a] + B2}  d a  
Ud2/ Y ) ” 2  2 k2 
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In the above, the Ai, Bi i =  1,2 are given in terms of A I  = tTl,=l and A,=  S:~*=I by the 
relations 

A2( k,/ 7 r ) I ”  exp( - U;/ k,) = - Uo[A, erf( Uok;”z) + B,]. 
The quantities A I  and A 2  are then given by (30), that is 

h l = ~ p + @ l ( T f ) - @ , ( T , ) + ~ ,  (38) 

together with the relation 

The constant y giving the speed of the moving boundary x = X (  t )  = (2yt)’/’ is 
determined by the nonlinear moving boundary condition which provides the transcen- 
dental equation 

-AI%( T/>(2kl/.rr)’/’ exP(-yA:/2kl) 

T , ) (2k , /~) ’ /~  exp(-yA:/2k2) = LpyI”. (40) 
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